Buy Aceon | Cheap Aceon | Buy Aceon Online Forum Index Buy Aceon | Cheap Aceon | Buy Aceon Online
Buy Aceon | Cheap Aceon | Buy Aceon Online
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   GalleriesGalleries   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

What is the difference between sorting and topolog

 
Post new topic   Reply to topic    Buy Aceon | Cheap Aceon | Buy Aceon Online Forum Index -> Buy Aceon | Cheap Aceon | Buy Aceon Online
View previous topic :: View next topic  
Author Message
cheapbag214s




Joined: 27 Jun 2013
Posts: 16004
Read: 0 topics

Warns: 0/5
Location: England

PostPosted: Fri 3:06, 06 Sep 2013    Post subject: What is the difference between sorting and topolog

What is the difference between sorting and topological,[url=http://duveticashop.webmium.com/][b]デュベティカ 激安[/b][/url]
At an abstract level they are connected: As Saeed and Stefan say,[url=http://parajumperslongbear.webmium.com/][b]discount Men And Women Parajumpers Jackets Outlet On Sale 2013[/b][/url], it's the difference between a total order and a partial order. That is a fantastically concise description, but sometimes not helpful when you're learning.
A total order means that,[url=http://duveticajacketsoutletjp.albirank.net/][b]デュベティカアウトレット[/b][/url], in the absence of repeats,[url=http://duveticajacketssalejp.albirank.net/][b]デュベティカダウンジャケットメンズ[/b][/url], when you sort something,[url=http://discount2013duveticajackets.webmium.com/][b]デュベティカ 店舗[/b][/url], you're going to get one unique proper answer. If you sort 3, 6, 2 in ascending order,[url=http://duveticadownjackets.webmium.com/][b]Duvetica Shop Online[/b][/url], you had better get one answer: 2, 3,[url=http://duveticajacketsjp.albirank.net/][b]デュベティカレディースダウンジャケット[/b][/url], 6.
A partial order is a little looser. The canonical example is the order in which you put your clothes on: You could put your shorts, then your pants, then your socks, then your shoes. That's a valid order. Or you could do shorts, socks,[url=http://discount2013duveticajackets.webmium.com/][b]デュベティカ 青山[/b][/url], pants, shoes. But intuitively, you can't do shorts, pants,[url=http://duveticajacketsjp.albirank.net/][b]デュベチカ 通販[/b][/url], shoes,[url=http://duveticatrenchcoat.webmium.com/][b]デュベティカ サイズ選び[/b][/url], socks. It doesn't make sense to put the socks on after the shoes.
To formalize that dressing example,[url=http://duveticaonline.halod.com/][b]デュベチカ専売店[/b][/url], you usually show a dependency graph with actions ("put on shoes") as nodes,[url=http://duveticashoponline.webmium.com/][b]デュベチカ 通販[/b][/url], and directed arcs showing what node must precede what other nodes. A topological sort is an ordering of all nodes in a graph like that which respects the arcs. Meaning, if there's an arc from socks to shoes,[url=http://duveticajacketssalejp.halod.com/][b]ダウンジャケットレディース[/b][/url], then socks better be before shoes in the order.
So again, at an abstract level, they're connected. But they are absolutely NOT the same thing.
If a total order is available every object can be compared with every object. In this case you can sort wrt. that order. Examples are the integers wrt,[url=http://duveticajacketsjp.gengfl.com/][b]デュベティカアウトレット[/b][/url]. > (or
If only a partial order is available,[url=http://duveticajacketsoutletjp.albirank.net/][b]デュベチカ 通販[/b][/url], not every object can be compared with every other object. Only a relation between certain objects is available. An example are dependencies between compilation units. by compiling units which depend on some other unit after these units). orderings) are possible: If A depends on B and there is some other unit C,[url=http://duveticajacketsoutletjp.albirank.net/][b]デュベティカ 店舗[/b][/url], possible compilation sequences are B,[url=http://kevindurantnerfshoes.blogspot.com/][b]jordans shoes sale[/b][/url],A,[url=http://duveticajacketsjp.gengfl.com/][b]デュベティカ 店舗[/b][/url],C and C,[url=http://duveticajacketswomenjp.albirank.net/][b]ダウンジャケットduvetica[/b][/url],A,[url=http://kevindurantnerfshoes.blogspot.com/][b]jordans shoes[/b][/url],B (every sequence where A is compiled before B).
相关的主题文章:


[url=http://facecloob.ir/]http://facecloob.ir/[/url]

[url=http://oyauto.com/forum.php?mod=viewthread&tid=881713]http://oyauto.com/forum.php?mod=viewthread&tid=881713[/url]

[url=http://ccgu5389886.gotoip1.com/forum.php?mod=viewthread&tid=426532]http://ccgu5389886.gotoip1.com/forum.php?mod=viewthread&tid=426532[/url]

[url=http://www.onemate.org/index.php?do=/blog/add/]http://www.onemate.org/index.php?do=/blog/add/[/url]

[url=http://newsdo.com/]http://newsdo.com/[/url]

[url=http://jostinlab.com/social/]http://jostinlab.com/social/[/url]

[url=http://0771y.com/]http://0771y.com/[/url]

[url=http://bbs.86318.com/home.php?mod=space&uid=14810&do=blog&id=103688]http://bbs.86318.com/home.php?mod=space&uid=14810&do=blog&id=103688[/url]

[url=http://51yam.com.cn/]http://51yam.com.cn/[/url]

[url=http://proradios.com.br/forum/viewtopic.php?p=72802#72802]http://proradios.com.br/forum/viewtopic.php?p=72802#72802[/url]

[url=http://uktop40charts.com/index.php?do=/user/login/]http://uktop40charts.com/index.php?do=/user/login/[/url]

[url=http://beachmonkey.com/index.php?do=/blog/add/]http://beachmonkey.com/index.php?do=/blog/add/[/url]

[url=http://www.lingutrans.com/plus/view.php?aid=192578]http://www.lingutrans.com/plus/view.php?aid=192578[/url]

[url=http://www.yaratam.ru/members/home]http://www.yaratam.ru/members/home[/url]

[url=http://zhangjinchao.5d6d.com/]http://zhangjinchao.5d6d.com/[/url]


The post has been approved 0 times
Back to top
View user's profile
Display posts from previous:   
Post new topic   Reply to topic    Buy Aceon | Cheap Aceon | Buy Aceon Online Forum Index -> Buy Aceon | Cheap Aceon | Buy Aceon Online All times are GMT + 2 Hours
Page 1 of 1

 
Jump to:  
You can post new topics in this forum
You can reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum

fora.pl - załóż własne forum dyskusyjne za darmo
Powered by phpBB © 2001, 2005 phpBB Group
Regulamin